0=-4.9t^2-2t+950

Simple and best practice solution for 0=-4.9t^2-2t+950 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=-4.9t^2-2t+950 equation:



0=-4.9t^2-2t+950
We move all terms to the left:
0-(-4.9t^2-2t+950)=0
We add all the numbers together, and all the variables
-(-4.9t^2-2t+950)=0
We get rid of parentheses
4.9t^2+2t-950=0
a = 4.9; b = 2; c = -950;
Δ = b2-4ac
Δ = 22-4·4.9·(-950)
Δ = 18624
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{18624}=\sqrt{64*291}=\sqrt{64}*\sqrt{291}=8\sqrt{291}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-8\sqrt{291}}{2*4.9}=\frac{-2-8\sqrt{291}}{9.8} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+8\sqrt{291}}{2*4.9}=\frac{-2+8\sqrt{291}}{9.8} $

See similar equations:

| 2c=10c-8 | | 2x+12=x^-6x-6x+36 | | 2x+19x=4 | | 5(2x-5)=4(6x+2) | | 360=10x*x | | 5x2+24x−36=0 | | -5+2s=7s | | 217=8(7-4n)+1 | | 14^2+3x-2=0 | | x/2-6=-20 | | -4y+8=-6y | | 9x+11=2x-10 | | -21a+28a-6=-10.8 | | g/15+15=25 | | 8w-15=41 | | 4+5v=14 | | 3x+12-5•x=22 | | -19=x/4-3 | | 3x-5-2x=4-x+7 | | 0.5x+31=37 | | 71/30+7/6x+1/6=6/5+2/5x | | 5(6y-5)+24=4(5y+2)+19 | | 6x-1=3(1+12x) | | X+1/5=x+1/5 | | 3+4x=—3+6x | | 40+4n+4=180 | | 6x-9=-2x+31 | | 2b+4/5=0 | | x(2-4)=20 | | 6-3a=2+2a | | -7(-7x-7)=441 | | 3x/4=5/4 |

Equations solver categories